
HAYSTAC
Release beta

Evangelos A. Dimopoulos, Evan K. Irving-Pease

Mar 02, 2023

CONTENTS:

1 Introduction 1

2 Installation 3
2.1 Install mamba . 3
2.2 Install haystac . 3
2.3 Git . 4

3 Workflow 5

4 Outputs 7
4.1 Expected outputs for haystac database . 7
4.2 Expected outputs for haystac sample . 7
4.3 Expected outputs for haystac analyse . 7

5 Tutorial 9
5.1 Configuring HAYSTAC . 9
5.2 Building the database . 9
5.3 Constructing the Query . 9
5.4 Representative RefSeq species . 10
5.5 Important note on RefSeq databases . 10
5.6 Providing custom accessions . 10
5.7 Providing custom sequences . 10
5.8 Combinations . 11
5.9 Index building . 11
5.10 Database building modes . 11
5.11 Building a mitochondrial DNA database . 12
5.12 Preparing a sample for analysis . 12
5.13 Sample analysis . 12
5.14 Filtering Alignment . 12
5.15 Database Alignments . 13
5.16 Likelihood calculation . 13
5.17 Important Note on the Dirichlet Assignment process during Likelihood calculation 13
5.18 Single organism sample or metagenome ? . 13
5.19 Assignment Probability Calculation . 14
5.20 Mean Posterior Abundances . 14
5.21 Reads . 14
5.22 Mapdamage analysis . 14
5.23 Important note on sample analysis . 15

6 Command Line Interface 17
6.1 haystac config . 17

i

6.2 haystac database . 17
6.3 haystac sample . 18
6.4 haystac analyse . 19

7 Developer documentation 21

8 FAQs 23

9 Tracking issues and bugs 25

10 Citations 27

11 Contributing 29

12 License 31

ii

CHAPTER

ONE

INTRODUCTION

HAYSTAC is a comprehensive computational tool for identifying species from DNA sequence data. It can pre-process
sequencing data (adapter trimming), build a database, analyse sequencing data and perform a deamination profile anal-
ysis. It can work in two different modes. One mode performs metagenomic identifications from samples containing
multiple organisms, and outputs mean posterior species abundances. The second mode can perform species identifica-
tions from single organism samples and it outputs species assignment posterior probabilities.

1

HAYSTAC, Release beta

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

HAYSTAC can be run on either macOS or Linux based systems, and the source code is available on github.

The recommended way to install haystac, and all if its dependencies, is via the [mamba](https://mamba.readthedocs.
io/en/latest/installation.html) package manager (a fast replacement for [conda](https://docs.conda.io/projects/conda/
en/latest/index.html)).

You can install haystac using conda, however, it will take significantly longer to install and analyses will run slower.

2.1 Install mamba

If you do not have either mamba or conda already installed, please refer to the [install instructions](https://mamba.
readthedocs.io/en/latest/installation.html) for mambaforge.

If you have conda installed, but not mamba, then install mamba into the base environment:

conda install -n base -c conda-forge mamba

2.2 Install haystac

Then use mamba to install haystac into a new environment:

mamba create -c conda-forge -c bioconda -n haystac haystac

And activate the environment:

conda activate haystac

We recommend that you install haystac into a new environment to avoid dependency conflicts with other software.

3

https://mamba.readthedocs.io/en/latest/installation.html
https://mamba.readthedocs.io/en/latest/installation.html
https://docs.conda.io/projects/conda/en/latest/index.html
https://docs.conda.io/projects/conda/en/latest/index.html
https://mamba.readthedocs.io/en/latest/installation.html
https://mamba.readthedocs.io/en/latest/installation.html

HAYSTAC, Release beta

2.3 Git

Clone from github:

git clone https://github.com/antonisdim/haystac.git

4 Chapter 2. Installation

CHAPTER

THREE

WORKFLOW

HAYSTAC was designed to be used as a species identifier for either single organism or metagenomic samples. The full
execution of the pipeline includes the construction of a database, the processing of a sample file and lastly the analysis
of a sample against a specific database. For that purpose three modules have been designed, each of which has its own

5

HAYSTAC, Release beta

outputs.

First the haystac database module can be used to construct a database, based on the user’s needs and preferences
(custom NCBI query, and/or custom NCBI accessions for each species, and/or prokarytic representative RefSeq, and/or
custom sequences). After the user input is collected, the user must provide a path where the outputs of the database
can be stored.

The haystac sample module prepares a sample to be analysed. It deals with trimming adapters and collapsing PE
reads if needed and it counts the number of reads that are included in the sample file provided by the user.

The haystac analysemodule performs the analysis of a sample against a specific database. All its outputs are created
under the path that the user specifies with the --output path.

6 Chapter 3. Workflow

CHAPTER

FOUR

OUTPUTS

This is a list of all the outputs produced after a successful run of each of haystac’s modules. All these outputs will be
found under the --output path specified by the user when running any of haystac’s modules. We advise to create
separate output directories for each one of the modules (database, sample and analyse).

4.1 Expected outputs for haystac database

db_taxa_accessions.tsv: includes all the taxon/accession pairs that are included in a database.

idx_database.done: file indicating that all the individual bowtie2 indices for each taxon have been prepared

entrez: directory containing all the results from querying the NCBI, including the nucleotide and taxonomy databases

bowtie: directory containing the bowtie2 index files for all out database, that will be used for the filtering alignment

database_inputs: directory containing the representative RefSeq table that is downloaded from NCBI.

4.2 Expected outputs for haystac sample

fastq_inputs: folder containing the outputs of the sample module.

fastq_inputs/meta: directory that includes the read count file.

fastq_inputs/(SE | PE | COLLAPSED): directory containing the trimmed reads produced by AdapteRremoval

4.3 Expected outputs for haystac analyse

bam: directory containing the bam file of the filtering alignment

fastq: directory containing the filtered reads in fastq format along with their average read length

alignments: directory where all the individual alignment bam files for each taxon in a database of the filtered reads are
outputted

ts_tv_counts: directory where all the transition and transversion counts are stored per taxon

probabilities: directory where the likelihood matrix and final posterior abundances/probabilities are stored. The final
output for abundance calculation has the suffix posterior_abundance.tsv,

mapdamage: directory that includes all the mapdamage profiles for every taxon in our Database

reads: directory including all the Dirichlet reads for each taxon in out database.

7

HAYSTAC, Release beta

8 Chapter 4. Outputs

CHAPTER

FIVE

TUTORIAL

5.1 Configuring HAYSTAC

If a user is running haystac for the first time on a machine, they might want to run the haystac config module first.
The user can use this module to provide an API key for querying NCBI and their preferred path for the cache genomes
folder, among other things. All of the options have default values that can be used. If a user later on wishes to change
any of these parameters specifically they can either run haystac config to pass a value to a specific argument.

Here is an example command that allows the configuration of using conda as a package manager for running the other
haystac modules.:

haystac config --use-conda True

5.2 Building the database

In order to build the database we will be using the database module of HAYSTAC. First we need to know what
organisms we would like to include in our database. Do we only need the complete genomes of a specific genus or do
we want more genera?

5.3 Constructing the Query

After deciding what taxa we would like to include in our database, we need to construct an NCBI query that will return
all the accessions that belong to the taxa that we are interested in. One of the best ways to construct such a query is to
go on the website of NCBI’s Nucleotide database (https://www.ncbi.nlm.nih.gov/nucleotide/), type in our query and
get the correctly formatted query string from the “Search details” box. We can then use that string for the construction
of our database.

For example if we would like to build a database of all the complete genomes of the species in the Yersinia genus we
can use the following command::

haystac database --mode build \
--query '"Yersinia"[Organism] AND "complete genome"[All Fields]' \
--output yersinia_example

For each species (or any other user defined taxonomic rank), the longest sequence per taxon will be used to populate
our database.

9

https://www.ncbi.nlm.nih.gov/nucleotide/

HAYSTAC, Release beta

5.4 Representative RefSeq species

When constructing a database there is always the option to include the species of the prokaryotic representative RefSeq
database as well. All you need to do is include the corresponding flag in your command.:

haystac database --mode build \
--query '"Yersinia"[Organism] AND "complete genome"[All Fields]' \
--output yersinia_example \
--refseq-rep prokaryote_rep

5.5 Important note on RefSeq databases

haystac database currently can build databases from three RefSeq tables, the prokaryotic representative RefSeq
table, the eukaryotes RefSeq table and the viruses RefSeq table. When the prokaryotic representative the database
is built, only species of microorganisms are included (strains are excluded), whereas in the eukaryotes and viruses
databases subspecies and strains are included respectively. To build any of the above databases, specify the desired
RefSeq table to be used by the --refseq-rep flag (prokaryote_rep for the prokaryotic representative, eukaryotes
for the eukaryotes and viruses for the viruses table).

5.6 Providing custom accessions

It is also possible to provide your own accessions for a selected species/taxon. For that you will need to prepare a tab
delimited file with two columns. The first column is the name of the taxon, that cannot contain any special characters,
other than an underscore (‘_’), and the second column is a valid NCBI accession code.

Here is an example of the contents of such a file::

Yersinia_ruckeri NZ_CP025800.1

The we can simply run the following command::

haystac database --mode build \
--query '"Yersinia"[Organism] AND "complete genome"[All Fields]' \
--output yersinia_example \
--accessions-file acc_example.txt

5.7 Providing custom sequences

It is also possible to provide your own sequences for a taxon. To do that you will need a a tab delimited file containing
the the name of the taxon with no special characters, and an underscore (‘_’) instead of spaces, a user defined accession
code and the path of the fasta file. The fasta file that the path point to can be either uncompressed or compressed with
gzip/bgzip.

Here is an example of such a file::

Yersinia_ruckeri user_seq_1 ~/example_sequence/user_seq_1.fasta

The we can simply run the following command::

10 Chapter 5. Tutorial

HAYSTAC, Release beta

haystac database --mode build \
--query '"Yersinia"[Organism] AND "complete genome"[All Fields]' \
--db-output yersinia_example \
--sequences-file seq_example.txt

5.8 Combinations

All of the previous options can be combined into one command. It is important to note that only one sequence file per
taxon is allowed in our database, and the priority goes user defined accessions or sequences, representative RefSeq and
then user specified query. It should be noted that for custom NCBI queries, plasmids can be fetched if they are part
of a genome assembly. The only exception to the one sequence file per taxon rule is plasmid sequences of the RefSeq
representative that are not part of complete genome assemblies and for that reason they are downloaded separately.

5.9 Index building

For the first part of the analysis an index out of all the genomes that are included in our database needs to be build. This
is a process that can take big amounts of memory depending on the number and the complexity of sequences that our
database includes. For that reason the user can specify the desired amount of memory resources available to haystac
and the program will try to build the required index. This can be specified through the --mem flag, that can be appended
to the any of the commands shown above. Memory resources need to be specified in MB. If the memory resources
provided are less than the size of the files that need to be indexed an error will be raised. We also advise caution when
changing the bowtie2 file size scaling factor.

5.10 Database building modes

For the complete construction of a database, sequences need to be downloaded and subsequently indexed. By specifying
--mode build to haystac database, the program downloads and indexes all the sequences that have been requested
by the user in one step. If a user would like to only download sequence data and index them later it is possible to do
so, by specifying haystac database --mode fetch, to download the sequences first and then execute haystac
database --mode index in order to perform the indexing. If mode fetch is run first then mode index should be
run subsequently, and not mode build, otherwise an error will be raised.

Here is an example of building a database in two steps instead of one::

haystac database --mode fetch \
--query '"Yersinia"[Organism] AND "complete genome"[All Fields]' \
--output yersinia_example

haystac database --mode index \
--output yersinia_example

5.8. Combinations 11

HAYSTAC, Release beta

5.11 Building a mitochondrial DNA database

When a user is providing a query about eukaryotes it is also possible to build a database with only mitochondrial
genomes (by default whole genome assemblies will be fetched for a given query). In order to do that a user can
specify the --mtDNA flag when running haystac database. We strongly advise against having a mixed database
of full eukaryotic genome assemblies for certain taxa and only mtDNA sequences for other taxa, as this will bias the
identifications towards the taxa with full genome assemblies.

5.12 Preparing a sample for analysis

After our database is built we need to prepare our samples for analysis. For that purpose, we are using the sample
module of haystac. The input files can be SE, PE or collapsed reads. If the reads are collapsed they are going to be
treated as SE reads.

It is possible to trim sequencing adapters and collapse PE reads by specifying the relative flags. Samples (specific
sequencing runs) can be also downloaded from the SRA if an sra run accession is provided.

If you have SE or already collapsed reads you only need to specify a file path for the --fastq flag. If your input is PE
reads then you will need to specify file paths for both the --fastq-r1 and --fastq-r2. If you want to download files
from the SRA all you need to do is provide an SRA accession for the --sra flag.

Here is an example of downloading reads from the SRA, trimming sequencing adapters and collapsing reads.:

haystac sample --sra ERR1018966 \
--output sample_example

5.13 Sample analysis

In order to analyse any sample we will need to use the analyse module of haystac.

5.14 Filtering Alignment

The first step for the sample analysis is to filter in all the reads that align to any of the genomes in our database. For
that we will need to use the haystac analyse --mode filter.

Here is an example command::

haystac analyse --mode filter \
--database yersinia_example \
--sample sample_example \
--output analysis_output

12 Chapter 5. Tutorial

HAYSTAC, Release beta

5.15 Database Alignments

After we have filtered our libraries we can align the filtered reads against all the genomes that are included in our
database. This can be done by using mode align of haystac analyse.

For example::

haystac analyse --mode align \
--database yersinia_example \
--sample sample_example \
--output analysis_output

Unless the user has a deep understanding of their dataset we advise to be cautious when changing the base mismatch
probability that is used later on in the method’s probabilistic model.

5.16 Likelihood calculation

After all the individual alignments have been competed, the number of transitions and transversions will be counted
for every read that has aligned against any of the reference genomes in our database. Then the likelihoods and posterior
probabilities for each read being sampled from a given reference genome will be calculated. For this step we can use
the likelihoods mode of haystac analyse.:

haystac analyse --mode likelihoods \
--database yersinia_example \
--sample sample_example \
--output analysis_output

5.17 Important Note on the Dirichlet Assignment process during Like-
lihood calculation

It is important to be aware of the individual read posterior probability threshold, for a read to be assigned to a taxon.
As a default HAYSTAC uses the conservative 0.75 probability threshold for the Dirichlet assignment. The higher value
you pick the more conservative the assignments become. It is useful to sometimes pick a value depending on what taxa
are being identified. If there is a need to distinguish between closely related taxa then a more conservative threshold
would increase the specificity of the analysis therefore being more appropriate, whereas when you’re trying to generally
characterise a metagenome a less conservative value could increase the sensitivity of the analysis be more helpful.

5.18 Single organism sample or metagenome ?

Depending on whether we would like to identify the species a sample is belongs to, or perform a metagenomic analysis,
we can use the probabilities or abundances mode of haystac analyse respectively.

5.15. Database Alignments 13

HAYSTAC, Release beta

5.19 Assignment Probability Calculation

In order to calculate posterior assignment probabilities we can run the following command::

haystac analyse --mode probabilities \
--database yersinia_example \
--sample sample_example \
--output analysis_output

5.20 Mean Posterior Abundances

In order to calculate mean posterior abundances we can run the following command::

haystac analyse --mode abundances \
--database yersinia_example \
--sample sample_example \
--output analysis_output

Along with the abundance calculation, we also perform a chi2 test to assess if the reads that have been assigned to a
taxon are clustering around specific genomic areas or if they represent a random sample of the organism’s genome. The
results of this test should be trusted for low depth sequencing data (equal or less than 1X). The null hypothesis is that
there is no read clustering.

5.21 Reads

After the mean posterior abundances have been calculated for a sample, all the reads that have been assigned to a
taxon through the Dirichlet process can be outputted in separate bam files ready for further downstream analyses (like
assembling or variant calling for instance) via the reads module. Reads that have been assigned to the Grey and Dark
Matter are outputted in fastq files as they have not been uniquely assigned to a taxon.

Here is an example command::

haystac analyse --mode reads \
--database yersinia_example \
--sample sample_example \
--output analysis_output

5.22 Mapdamage analysis

If our samples are ancient we can use mapDamage to estimate the level of deamination in the reads that have aligned
to any taxon in our database. For that we can use the mapdamage module of haystac. The mapDamage analysis will
be performed on the subset of reads that have been uniquely assigned to a taxon through the dirichlet process. This
module can be either run independently or after the reads module.

Here is an example command::

haystac analyse --mode mapdamage \
--database yersinia_example \

(continues on next page)

14 Chapter 5. Tutorial

HAYSTAC, Release beta

(continued from previous page)

--sample sample_example \
--output analysis_output

5.23 Important note on sample analysis

The first 3 steps (modes: filter, align, likelihoods) can be executed automatically when you call the
probabilities or abundances mode of haystac.

5.23. Important note on sample analysis 15

HAYSTAC, Release beta

16 Chapter 5. Tutorial

CHAPTER

SIX

COMMAND LINE INTERFACE

6.1 haystac config

Optional arguments:

-h, --help Show this help message and exit
--cache <path> Cache folder for storing genomes downloaded from NCBI

and other shared data (default:
/home/antony/haystac/cache)

--clear-cache Clear the contents of the cache folder, and delete the
folder itself (default: False)

--api-key <code> Personal NCBI API key (increases max concurrent requests
from 3 to 10,
https://www.ncbi.nlm.nih.gov/account/register/)

--use-conda <bool> Use conda as a package manger (default: False)

6.2 haystac database

Required arguments:

--mode <mode> Database creation mode for haystac [fetch, index,
build]

--output <path> Path to the database output directory

Required choice:

--query <query> Database query in the NCBI query language. Please
refer to the documentation for assistance with
constructing a valid query.

--query-file <path> File containing a database query in the NCBI query
language.

--accessions-file <path>
Tab delimited file containing one record per row: the
name of the taxon, and a valid NCBI accession code
from the nucleotide, assembly or WGS databases.

--sequences-file <path>
Tab delimited file containing one record per row: the
name of the taxon, a user defined accession code, and
the path to the fasta file (optionally compressed).

(continues on next page)

17

HAYSTAC, Release beta

(continued from previous page)

--refseq-rep <table> Use one of the RefSeq curated tables to construct a
DB. Includes all prokaryotic species (excluding
strains) from the representative RefSeq DB, or all the
species and strains from the viruses DB, or all the
species and subspecies from the eukaryotes DB. If
multiple accessions exist for a given species/strain,
the first pair of species/accession is kept. Available
RefSeq tables to use [prokaryote_rep, viruses,
eukaryotes].

Optional arguments:

--force-accessions Disable validation checks for 'anomalous' assembly
flags in NCBI (default: False)

--exclude-accessions <accession> [<accession> ...]
List of NCBI accessions to exclude. (default: [])

--resolve-accessions Pick the first accession when two accessions for a
taxon can be found in user provided input files
(default: False)

--bowtie2-scaling <float>
Rescaling factor to keep the bowtie2 mutlifasta index
below the maximum memory limit (default: 25.0)

--rank <rank> Taxonomic rank to perform the identifications on
[genus, species, subspecies, serotype] (default:
species)

--genera <genus> [<genus> ...]
List of genera to restrict the abundance calculations.

--mtDNA For eukaryotes, download mitochondrial genomes only.
Not to be used with --refseq-rep or queries containing
prokaryotes (default: False)

--seed <int> Random seed for database indexing

Common arguments:

-h, --help Show this help message and exit
--cores <int> Maximum number of CPU cores to use (default: MAX_CPUs)
--mem <int> Maximum memory (MB) to use (default: MAX_MEM)
--unlock Unlock the output directory following a crash or hard

restart (default: False)
--debug Enable debugging mode (default: False)
--snakemake '<json>' Pass additional flags to the `snakemake` scheduler..

6.3 haystac sample

Required arguments:

--output <path> Path to the sample output directory

Required choice:

18 Chapter 6. Command Line Interface

HAYSTAC, Release beta

--fastq <path> Single-end fastq input file (optionally compressed).
--fastq-r1 <path> Paired-end forward strand (R1) fastq input file.
--fastq-r2 <path> Paired-end reverse strand (R2) fastq input file.
--sra <accession> Download fastq input from the SRA database

Optional arguments:

--collapse <bool> Collapse overlapping paired-end reads, e.g. for aDNA
(default: False)

--trim-adapters <bool>
Automatically trim sequencing adapters from fastq
input (default: True)

Common arguments:

-h, --help Show this help message and exit
--cores <int> Maximum number of CPU cores to use (default: MAX_CPUs)
--mem <int> Maximum memory (MB) to use (default: MAX_MEM)
--unlock Unlock the output directory following a crash or hard

restart (default: False)
--debug Enable debugging mode (default: False)
--snakemake '<json>' Pass additional flags to the ``snakemake`` scheduler.

6.4 haystac analyse

Required arguments:

--mode <mode> Analysis mode for the selected sample [filter, align,
likelihoods, probabilities, abundances, reads,
mapdamage]

--database <path> Path to the database output directory
--sample <path> Path to the sample output directory
--output <path> Path to the analysis output directory

Optional arguments:

--genera <genus> [<genus> ...]
List of genera to restrict the abundance calculations
(default: [])

--min-prob <float> Minimum posterior probability to assign an aligned
read to a given species (default: 0.75)

--mismatch-probability <float>
Base mismatch probability (default: 0.05)

Common arguments:

-h, --help Show this help message and exit
--cores <int> Maximum number of CPU cores to use (default: MAX_CPUs)
--mem <int> Maximum memory (MB) to use (default: MAX_MEM)
--unlock Unlock the output directory following a crash or hard

restart (default: False)
(continues on next page)

6.4. haystac analyse 19

HAYSTAC, Release beta

(continued from previous page)

--debug Enable debugging mode (default: False)
--snakemake '<json>' Pass additional flags to the `snakemake` scheduler.

20 Chapter 6. Command Line Interface

CHAPTER

SEVEN

DEVELOPER DOCUMENTATION

Todo: Write developer documentation.

21

HAYSTAC, Release beta

22 Chapter 7. Developer documentation

CHAPTER

EIGHT

FAQS

Todo: write FAQs

23

HAYSTAC, Release beta

24 Chapter 8. FAQs

CHAPTER

NINE

TRACKING ISSUES AND BUGS

haystac is under active development and we encourage you to report any issues you encounter via the GitHub issue
tracker (https://github.com/antonisdim/haystac/issues).

25

https://github.com/antonisdim/haystac/issues

HAYSTAC, Release beta

26 Chapter 9. Tracking issues and bugs

CHAPTER

TEN

CITATIONS

A preprint describing haystac is available on bioRxiv:

Dimopoulos, E.A.*, Carmagnini, A.*, Velsko, I.M., Warinner, C., Larson, G., Frantz, L.A.F., Irving-Pease, E.K.,
2020. HAYSTAC: A Bayesian framework for robust and rapid species identification in high-throughput sequencing
data. bioRxiv 2020.12.16.419085. https://www.biorxiv.org/content/10.1101/2020.12.16.419085v1

27

https://www.biorxiv.org/content/10.1101/2020.12.16.419085v1

HAYSTAC, Release beta

28 Chapter 10. Citations

CHAPTER

ELEVEN

CONTRIBUTING

Evangelos Antonios Dimopoulos, Evan K. Irving-Pease, Alberto Carmagnini

29

HAYSTAC, Release beta

30 Chapter 11. Contributing

CHAPTER

TWELVE

LICENSE

MIT

31

	Introduction
	Installation
	Install mamba
	Install haystac
	Git

	Workflow
	Outputs
	Expected outputs for haystac database
	Expected outputs for haystac sample
	Expected outputs for haystac analyse

	Tutorial
	Configuring HAYSTAC
	Building the database
	Constructing the Query
	Representative RefSeq species
	Important note on RefSeq databases
	Providing custom accessions
	Providing custom sequences
	Combinations
	Index building
	Database building modes
	Building a mitochondrial DNA database
	Preparing a sample for analysis
	Sample analysis
	Filtering Alignment
	Database Alignments
	Likelihood calculation
	Important Note on the Dirichlet Assignment process during Likelihood calculation
	Single organism sample or metagenome ?
	Assignment Probability Calculation
	Mean Posterior Abundances
	Reads
	Mapdamage analysis
	Important note on sample analysis

	Command Line Interface
	haystac config
	haystac database
	haystac sample
	haystac analyse

	Developer documentation
	FAQs
	Tracking issues and bugs
	Citations
	Contributing
	License

